ISSN 1600-5368

Tetraaquabis[1-(3-carboxyphenyl)-4,4'bipvridin-1-ium- $\kappa N^{1'}$ lzinc bis(4.5-carboxybenzene-1,2-dicarboxylate) 2.5-hydrate

lie Zhang, Yi Tan and Zhiyong Fu*

Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China

Correspondence e-mail: zyfu@scut.edu.cn

Received 23 August 2011; accepted 27 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.031; wR factor = 0.078; data-toparameter ratio = 11.3.

the complex cation of the title compound, In $[Zn(C_{17}H_{13}N_2O_2)_2(H_2O)_4](C_{10}H_4O_8)_2 \cdot 2.5H_2O$, the Zn^{II} atom, lying on an inversion center, is coordinated by two N atoms from two N-(3-carboxyphenyl)-4,4'-bipyridin-1-ium ligands and four water molecules in a distorted octahedral geometry. The pyromellitate anion is double deprotonated. $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds connect the cations, anions and uncoordinated water molecules into a three-dimensional supramolecular network. One of the two lattice water molecules shows an occupancy of 0.25. An intramolecular $O-H \cdots O$ hydrogen bond is present in the anion.

Related literature

For background to the structures and applications of viologen compounds, see: Ebbesen et al. (1984); Jin et al. (2010); Sun et al. (2005); Xu et al. (2007).

 $\beta = 110.431 \ (2)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.56 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.028$

Z = 2

V = 2665.63 (10) Å³

 $0.43 \times 0.41 \times 0.37 \text{ mm}$

25451 measured reflections

4867 independent reflections

4250 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

[Zn(C17H13N2O2)2(H2O)4]- $(C_{10}H_4O_8)_2 \cdot 2.5H_2O$ $M_r = 1241.33$ Monoclinic, $P2_1/c$ a = 7.5476 (2) Å b = 19.5528 (4) Å c = 19.2752 (4) Å

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.781, T_{\max} = 0.825$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture o
$wR(F^2) = 0.078$	independent and constrained
S = 1.06	refinement
4867 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
429 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1	
Hydrogen-bond geometry	ίÅ

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H7\cdots O12^{i}$	0.87 (2)	1.80 (3)	2.656 (3)	164 (3)
$O3-H1\cdots O11^{ii}$	0.85 (2)	1.88 (3)	2.732 (2)	175 (3)
$O3-H2\cdots O11^{iii}$	0.81 (3)	2.03 (2)	2.820 (4)	163 (2)
O4−H3···O13 ⁱⁱⁱ	0.84(2)	1.84 (3)	2.677 (6)	175 (3)
$O4-H4\cdots O12^{iv}$	0.90 (3)	1.79 (4)	2.694 (2)	177 (4)
O6−H9···O7	0.87 (3)	1.56 (3)	2.418 (2)	174 (3)
O9−H8···O8 ⁱⁱⁱ	0.85 (3)	1.82 (3)	2.646 (3)	163 (4)
O13-H5···O10	0.92 (4)	1.90 (2)	2.813 (3)	174 (3)
$O13 - H6 \cdot \cdot \cdot O7^{iii}$	0.87 (4)	1.86 (4)	2.723 (2)	169 (3)
O14-H11···O13	0.82(2)	2.18 (2)	2.846 (2)	138 (2)
$C7-H7A\cdots O1^{v}$	0.93	2.30	3.155 (2)	153
$C8-H8A\cdots O12^{vi}$	0.93	2.52	3.302 (2)	142
$C9-H9A\cdots O2^{vii}$	0.93	2.30	3.225 (2)	172
$C10-H10A\cdots O5^{viii}$	0.93	2.15	3.060 (3)	167

Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x+2, y-\frac{1}{2}, -z+\frac{1}{2};$ (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$, (iv) $x - 1, -y + \frac{3}{2}, z + \frac{1}{2}$, (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$, (vi) x - 1, y, z; (vii) $-x + 1, -y + \tilde{2}, -z + 1;$ (viii) $-\tilde{x} + 1, \tilde{y} + \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the NNSFC (grant Nos. 21053001 and 20701014), the Fundamental Research Funds for the Central Universities (2009ZM0030) and the SRP program of the SCUT for financial support. They also thank Professor Tong Chun Kuang (Analytical and Testing Center of SCUT) for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2468).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Ebbesen, T. W., Manring, L. E. & Peters, K. S. (1984). J. Am. Chem. Soc. 106, 7400–7404.
- Jin, X.-H., Sun, J.-K., Xu, X.-M., Li, Z.-H. & Zhang, J. (2010). Chem. Commun. 46, 4695–4697.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sun, Y.-Q., Zhang, J., Ju, Z.-F. & Yang, G.-Y. (2005). Cryst. Growth Des. 5, 1939–1943.
- Xu, G., Guo, G.-C., Wang, M.-S. & Zhang, Z.-G. (2007). Angew. Chem. Int. Ed. 46, 3249–3251.

Acta Cryst. (2011). E67, m1701-m1702 [doi:10.1107/S1600536811045156]

Tetraaquabis $[1-(3-carboxyphenyl)-4,4'-bipyridin-1-ium-\kappa N^{1'}]$ zinc bis (4,5-carboxybenzene-1,2-di-carboxylate) 2.5-hydrate

J. Zhang, Y. Tan and Z. Fu

Comment

Viologens are quaternary salts derived from 4,4'-bipyridine (Ebbesen *et al.*, 1984). Intensively interests have been focused on these compounds for their electron-transfer properties and enormous potential applications in electrochromic displays and optically switchable devices (Jin *et al.*, 2010; Sun *et al.*, 2005; Xu *et al.*, 2007). Most of them are dimethyl-, diethyl-, dibetaine- and dibenzyl viologens. Here we report the synthesis and structure of a new viologen compound with *N*-3- carboxyphenyl substitution and double-deprotonated pyromellitate as compensation anions.

The asymmetric unit of the title compound contains one Zn^{II} atom lying on an inversion center, one *N*-(3-carboxyphenyl)-4,4'-bipyridinium ligand, one double-deprotonated pyromellitate anion, two coordinated water molecules and 1.25 uncooedinated water molecules (Fig. 1). The Zn^{II} atom is six-coordinated by two N atoms of the viologen ligands and four O atoms of water molecules. The Zn—N bond length is 2.1689 (14) Å and the Zn—O bond lengths are 2.0798 (13) and 2.1335 (14) Å. The bond angles vary from 88.98 (6) to 93.42 (5)°, indicating a distorted octahedral geometry. O—H…O and C—H…O hydrogen bonds (Table 1) connect the cations, anions and uncoordinated water molecules into a three-dimensional supramolecular network (Fig. 2).

Experimental

A mixture of *N*-(3-carboxyphenyl)-4,4'-bipyridinium chloride (0.2 mmol), ZnO(1 mmol), phosphoric acid (2 mmol), pyromellitic acid (0.2 mmol) and water (5 ml) was sealed in a 23 ml Teflon-lined bomb at 120°C for 72 h. Yellow block-shaped crystals were obtained.

Refinement

H atoms of the hydroxyl groups and water molecules were located in a difference Fourier map and refined with $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms attached to O6 and O14 were refined with a distance restraint of O—H = 0.82 (2) Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) 1-x, 1-y, 1-z.]

Fig. 2. The three-dimensional supramolecular structure of the title compound. Dashed lines denote hydrogen bonds.

$Tetraaquabis [1-(3-carboxyphenyl)-4,4'-bipyridin-1-ium-\kappa N^{1'}] zinc \ bis (4,5-carboxybenzene-1,2-dicarboxylate) 2.5-hydrate$

Crystal data

$[Zn(C_{17}H_{13}N_2O_2)_2(H_2O)_4](C_{10}H_4O_8)_2 \cdot 2.5H_2O$	F(000) = 1282
$M_r = 1241.33$	$D_{\rm x} = 1.547 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4867 reflections
a = 7.5476 (2) Å	$\theta = 3.1 - 25.4^{\circ}$
b = 19.5528 (4) Å	$\mu = 0.56 \text{ mm}^{-1}$
c = 19.2752 (4) Å	T = 298 K
$\beta = 110.431 \ (2)^{\circ}$	Block, yellow
$V = 2665.63 (10) \text{ Å}^3$	$0.43 \times 0.41 \times 0.37 \text{ mm}$
Z = 2	

Data collection

Bruker APEX CCD diffractometer	4867 independent reflections
Radiation source: fine-focus sealed tube	4250 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
ϕ and ω scans	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -9 \rightarrow 8$
$T_{\min} = 0.781, T_{\max} = 0.825$	$k = -23 \rightarrow 23$
25451 measured reflections	<i>l</i> = −23→23

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.078$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0331P)^{2} + 1.443P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4867 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
429 parameters	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$

4 restraints

$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Zn1	0.5000	0.5000	0.5000	0.02391 (9)	
01	0.5186 (2)	1.24085 (7)	0.33078 (8)	0.0434 (4)	
H7	0.583 (4)	1.2716 (14)	0.3626 (15)	0.065*	
O2	0.6136 (2)	1.16786 (7)	0.42474 (8)	0.0513 (4)	
O3	0.80086 (19)	0.50774 (7)	0.53939 (8)	0.0327 (3)	
H1	0.844 (3)	0.4741 (13)	0.5221 (13)	0.049*	
H2	0.855 (3)	0.5404 (13)	0.5307 (13)	0.049*	
O4	0.4919 (2)	0.53685 (7)	0.60006 (8)	0.0344 (3)	
Н3	0.591 (4)	0.5432 (13)	0.6368 (14)	0.052*	
H4	0.423 (3)	0.5747 (13)	0.5993 (13)	0.052*	
O5	0.7710 (4)	0.55277 (9)	0.05365 (11)	0.0879 (8)	
O6	0.7924 (2)	0.53366 (8)	-0.05325 (9)	0.0507 (4)	
Н9	0.819 (4)	0.5542 (14)	-0.0882 (13)	0.076*	
07	0.8657 (3)	0.59789 (8)	-0.14700 (9)	0.0702 (6)	
08	0.9161 (2)	0.70368 (8)	-0.17320 (7)	0.0464 (4)	
O9	0.9545 (2)	0.74468 (7)	0.20592 (7)	0.0419 (4)	
H8	0.939 (4)	0.7691 (13)	0.2399 (15)	0.063*	
O10	0.9735 (2)	0.84566 (7)	0.15526 (8)	0.0444 (4)	
011	1.04737 (18)	0.89852 (6)	0.00847 (7)	0.0349 (3)	
012	1.29187 (17)	0.84798 (6)	0.09494 (7)	0.0313 (3)	
O13	0.8157 (3)	0.95061 (10)	0.21503 (10)	0.0555 (4)	
H5	0.872 (5)	0.9152 (19)	0.199 (2)	0.105 (13)*	
H6	0.816 (5)	0.9357 (17)	0.257 (2)	0.097 (12)*	
O14	0.8680 (18)	1.0750 (5)	0.2965 (6)	0.109 (3)	0.25
H10	0.91 (3)	1.062 (10)	0.340 (4)	0.163*	0.25
H11	0.798 (10)	1.044 (3)	0.275 (10)	0.163*	0.25
N1	0.4598 (2)	0.60196 (7)	0.45273 (8)	0.0267 (3)	
N2	0.3534 (2)	0.93790 (7)	0.31154 (8)	0.0253 (3)	
C1	0.3529 (3)	0.61428 (9)	0.38216 (11)	0.0359 (4)	
H1A	0.2941	0.5775	0.3525	0.043*	
C2	0.3255 (3)	0.67884 (9)	0.35108 (11)	0.0360 (4)	
H2A	0.2528	0.6848	0.3014	0.043*	
C3	0.5401 (3)	0.65598 (9)	0.49434 (10)	0.0299 (4)	
H3A	0.6167	0.6485	0.5433	0.036*	
C4	0.5151 (3)	0.72233 (9)	0.46828 (10)	0.0301 (4)	
H4A	0.5702	0.7584	0.4999	0.036*	
C5	0.4079 (2)	0.73488 (8)	0.39504 (10)	0.0253 (4)	
C6	0.3860 (2)	0.80580 (9)	0.36554 (10)	0.0256 (4)	
C7	0.3945 (3)	0.81976 (9)	0.29649 (10)	0.0340 (4)	
H7A	0.4100	0.7841	0.2672	0.041*	
C8	0.3803 (3)	0.88552 (9)	0.27086 (10)	0.0343 (4)	
H8A	0.3893	0.8942	0.2248	0.041*	
C9	0.3598 (3)	0.86071 (9)	0.40711 (10)	0.0284 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.3547	0.8532	0.4540	0.034*
C10	0.3416 (3)	0.92569 (9)	0.37883 (10)	0.0288 (4)
H10A	0.3208	0.9619	0.4063	0.035*
C12	0.3409 (3)	1.00795 (8)	0.28392 (10)	0.0263 (4)
C13	0.2324 (3)	1.02160 (10)	0.21080 (10)	0.0355 (4)
H13A	0.1684	0.9866	0.1793	0.043*
C14	0.2213 (3)	1.08835 (10)	0.18574 (11)	0.0407 (5)
H14A	0.1504	1.0983	0.1367	0.049*
C15	0.3149 (3)	1.14040 (9)	0.23309 (10)	0.0330 (4)
H15A	0.3052	1.1852	0.2160	0.040*
C16	0.4233 (3)	1.12578 (9)	0.30622 (10)	0.0261 (4)
C17	0.4371 (2)	1.05870 (9)	0.33179 (9)	0.0265 (4)
H17A	0.5103	1.0483	0.3805	0.032*
C18	0.5277 (3)	1.17943 (9)	0.36038 (10)	0.0290 (4)
C19	0.8122 (3)	0.57302 (10)	0.00281 (12)	0.0367 (5)
C20	0.8992 (3)	0.65999 (10)	-0.13012 (10)	0.0311 (4)
C21	0.9692 (2)	0.78374 (9)	0.15265 (10)	0.0272 (4)
C22	1.1268 (2)	0.84837 (8)	0.04705 (9)	0.0240 (4)
C23	0.8857 (2)	0.64591 (9)	0.00489 (10)	0.0252 (4)
C24	0.9082 (2)	0.67918 (9)	0.07170 (9)	0.0262 (4)
H24A	0.8778	0.6557	0.1080	0.031*
C25	0.9740 (2)	0.74564 (9)	0.08605 (9)	0.0231 (4)
C26	1.0261 (2)	0.78040 (8)	0.03287 (9)	0.0223 (3)
C27	0.9965 (2)	0.74906 (9)	-0.03482 (9)	0.0245 (4)
H27A	1.0256	0.7733	-0.0710	0.029*
C28	0.9254 (2)	0.68298 (9)	-0.05120 (9)	0.0237 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03018 (16)	0.01496 (15)	0.02675 (16)	0.00253 (11)	0.01013 (12)	0.00130 (11)
01	0.0654 (10)	0.0207 (7)	0.0339 (8)	-0.0122 (7)	0.0046 (7)	0.0038 (6)
O2	0.0864 (12)	0.0321 (8)	0.0254 (8)	-0.0156 (8)	0.0070 (8)	0.0014 (6)
O3	0.0322 (7)	0.0228 (7)	0.0456 (8)	-0.0012 (6)	0.0167 (6)	-0.0025 (6)
O4	0.0456 (8)	0.0273 (7)	0.0299 (7)	0.0110 (6)	0.0125 (6)	-0.0006 (6)
O5	0.178 (2)	0.0368 (10)	0.0895 (14)	-0.0447 (12)	0.0982 (16)	-0.0147 (9)
O6	0.0767 (11)	0.0299 (8)	0.0470 (9)	-0.0207 (8)	0.0234 (8)	-0.0105 (7)
O7	0.1403 (18)	0.0379 (9)	0.0362 (9)	-0.0227 (10)	0.0359 (10)	-0.0152 (7)
O8	0.0765 (11)	0.0419 (9)	0.0260 (7)	-0.0017 (8)	0.0243 (7)	0.0016 (6)
O9	0.0714 (10)	0.0359 (8)	0.0269 (7)	-0.0035 (7)	0.0281 (7)	-0.0002 (6)
O10	0.0751 (11)	0.0284 (8)	0.0404 (8)	-0.0017 (7)	0.0335 (8)	-0.0051 (6)
O11	0.0391 (7)	0.0211 (7)	0.0442 (8)	0.0020 (6)	0.0141 (6)	0.0095 (6)
O12	0.0334 (7)	0.0211 (6)	0.0359 (7)	-0.0047 (5)	0.0076 (6)	0.0014 (5)
O13	0.0707 (11)	0.0586 (11)	0.0343 (9)	0.0133 (9)	0.0147 (8)	0.0069 (8)
O14	0.142 (9)	0.066 (6)	0.087 (7)	0.003 (6)	0.001 (7)	-0.007 (5)
N1	0.0324 (8)	0.0173 (7)	0.0303 (8)	0.0015 (6)	0.0108 (7)	0.0009 (6)
N2	0.0356 (8)	0.0162 (7)	0.0235 (7)	0.0000 (6)	0.0094 (6)	0.0008 (6)
C1	0.0510 (12)	0.0183 (9)	0.0312 (10)	-0.0001 (8)	0.0053 (9)	-0.0028 (8)

C2	0.0529 (12)	0.0205 (9)	0.0272 (10)	0.0028 (8)	0.0047 (9)	0.0012 (8)
C3	0.0334 (10)	0.0235 (9)	0.0282 (10)	-0.0008 (8)	0.0051 (8)	0.0033 (7)
C4	0.0363 (10)	0.0184 (9)	0.0313 (10)	-0.0048 (7)	0.0065 (8)	-0.0022 (7)
C5	0.0310 (9)	0.0172 (8)	0.0292 (9)	0.0023 (7)	0.0127 (8)	0.0018 (7)
C6	0.0294 (9)	0.0187 (9)	0.0270 (9)	-0.0001 (7)	0.0078 (7)	-0.0003 (7)
C7	0.0573 (12)	0.0190 (9)	0.0288 (10)	0.0031 (8)	0.0189 (9)	-0.0033 (7)
C8	0.0582 (12)	0.0233 (9)	0.0255 (10)	0.0008 (9)	0.0198 (9)	-0.0006 (8)
C9	0.0421 (10)	0.0215 (9)	0.0242 (9)	0.0005 (8)	0.0148 (8)	0.0013 (7)
C10	0.0428 (11)	0.0201 (9)	0.0268 (9)	0.0015 (8)	0.0162 (8)	-0.0028 (7)
C12	0.0360 (10)	0.0174 (9)	0.0263 (9)	0.0006 (7)	0.0119 (8)	0.0035 (7)
C13	0.0464 (11)	0.0254 (10)	0.0271 (10)	-0.0056 (8)	0.0032 (9)	-0.0015 (8)
C14	0.0528 (13)	0.0314 (11)	0.0254 (10)	-0.0017 (9)	-0.0021 (9)	0.0072 (8)
C15	0.0443 (11)	0.0201 (9)	0.0312 (10)	-0.0003 (8)	0.0091 (9)	0.0070 (8)
C16	0.0340 (9)	0.0198 (9)	0.0260 (9)	0.0000 (7)	0.0123 (8)	0.0021 (7)
C17	0.0342 (10)	0.0228 (9)	0.0217 (9)	0.0005 (7)	0.0089 (7)	0.0030 (7)
C18	0.0393 (10)	0.0227 (9)	0.0278 (10)	-0.0021 (8)	0.0154 (8)	0.0013 (7)
C19	0.0467 (12)	0.0244 (10)	0.0439 (12)	-0.0072 (9)	0.0221 (10)	-0.0011 (9)
C20	0.0374 (10)	0.0316 (10)	0.0240 (9)	0.0008 (8)	0.0104 (8)	-0.0018 (8)
C21	0.0280 (9)	0.0308 (10)	0.0239 (9)	-0.0018 (7)	0.0104 (7)	0.0005 (7)
C22	0.0314 (9)	0.0191 (9)	0.0260 (9)	-0.0012 (7)	0.0157 (8)	0.0000 (7)
C23	0.0278 (9)	0.0215 (9)	0.0267 (9)	-0.0029 (7)	0.0102 (7)	0.0004 (7)
C24	0.0311 (9)	0.0266 (9)	0.0240 (9)	-0.0022 (7)	0.0134 (7)	0.0048 (7)
C25	0.0245 (8)	0.0241 (9)	0.0203 (8)	-0.0009 (7)	0.0073 (7)	0.0010 (7)
C26	0.0243 (8)	0.0196 (8)	0.0232 (8)	0.0004 (7)	0.0087 (7)	0.0018 (7)
C27	0.0301 (9)	0.0227 (9)	0.0233 (9)	-0.0012 (7)	0.0124 (7)	0.0045 (7)
C28	0.0258 (9)	0.0234 (9)	0.0216 (9)	0.0006 (7)	0.0077 (7)	0.0006 (7)

Geometric parameters (Å, °)

Zn1—O4	2.0798 (13)	C4—C5	1.382 (3)
Zn1—O3	2.1335 (14)	C4—H4A	0.9300
Zn1—N1	2.1689 (14)	C5—C6	1.486 (2)
O1—C18	1.321 (2)	C6—C7	1.382 (3)
O1—H7	0.88 (3)	C6—C9	1.394 (2)
O2—C18	1.204 (2)	C7—C8	1.368 (3)
O3—H1	0.85 (3)	C7—H7A	0.9300
O3—H2	0.81 (3)	С8—Н8А	0.9300
O4—H3	0.84 (3)	C9—C10	1.371 (2)
O4—H4	0.90 (3)	С9—Н9А	0.9300
O5—C19	1.195 (2)	C10—H10A	0.9300
O6—C19	1.292 (2)	C12C17	1.377 (2)
O6—H9	0.867 (17)	C12—C13	1.387 (3)
O7—C20	1.260 (2)	C13—C14	1.384 (3)
O8—C20	1.229 (2)	С13—Н13А	0.9300
O9—C21	1.315 (2)	C14—C15	1.385 (3)
О9—Н8	0.85 (3)	C14—H14A	0.9300
O10-C21	1.212 (2)	C15—C16	1.390 (3)
O11—C22	1.250 (2)	C15—H15A	0.9300
O12—C22	1.266 (2)	C16—C17	1.392 (2)

012 45	0.02(4)	C16 C19	1.406(2)
013—H6	0.92(4) 0.87(4)	C17—H17A	0.9300
014—H10	0.87(1)	C19-C23	1 525 (2)
014—H11	0.82(2)	$C_{10} - C_{23}$	1.525(2) 1.531(2)
N1—C3	1 337 (2)	C21—C25	1.496 (2)
N1—C1	1.339 (2)	C22—C26	1.508 (2)
N2—C8	1.348 (2)	C23—C24	1.399 (2)
N2—C10	1.352 (2)	C23—C28	1.418 (2)
N2—C12	1.460 (2)	C24—C25	1.384 (2)
C1—C2	1.382 (3)	C24—H24A	0.9300
C1—H1A	0.9300	C25—C26	1.396 (2)
C2—C5	1.392 (3)	C26—C27	1.387 (2)
C2—H2A	0.9300	C27—C28	1.392 (2)
C3—C4	1.380 (2)	C27—H27A	0.9300
С3—НЗА	0.9300		
O4 ⁱ —Zn1—O4	180.0	С10—С9—Н9А	120.0
O4 ⁱ —Zn1—O3 ⁱ	91.02 (6)	С6—С9—Н9А	120.0
O4—Zn1—O3 ⁱ	88.98 (6)	N2-C10-C9	120.95 (16)
O4 ⁱ —Zn1—O3	88.98 (6)	N2	119.5
O4—Zn1—O3	91.02 (6)	C9—C10—H10A	119.5
O3 ⁱ —Zn1—O3	180.0	C17—C12—C13	121.91 (16)
O4 ⁱ —Zn1—N1	88.50 (5)	C17—C12—N2	118.68 (15)
O4—Zn1—N1	91.50 (5)	C13—C12—N2	119.41 (16)
$O3^{i}$ —Zn1—N1	86.58 (5)	C14—C13—C12	118.60 (17)
O3—Zn1—N1	93.42 (5)	C14—C13—H13A	120.7
$O4^{i}$ —Zn1—N1 ⁱ	91.50 (5)	C12—C13—H13A	120.7
O4—Zn1—N1 ⁱ	88.50 (5)	C13—C14—C15	120.55 (18)
$O3^{i}$ —Zn1—N1 ⁱ	93.42 (5)	C13—C14—H14A	119.7
O3—Zn1—N1 ⁱ	86.58 (5)	C15—C14—H14A	119.7
N1—Zn1—N1 ⁱ	180.00 (8)	C14—C15—C16	120.09 (17)
С18—О1—Н7	113.0 (17)	C14—C15—H15A	120.0
Zn1—O3—H1	107.9 (16)	C16—C15—H15A	120.0
Zn1—O3—H2	122.5 (17)	C15-C16-C17	119.83 (16)
H1—O3—H2	104 (2)	C15—C16—C18	122.93 (16)
Zn1—O4—H3	121.7 (17)	C17—C16—C18	117.23 (16)
Zn1—O4—H4	118.2 (15)	C12—C17—C16	119.02 (16)
H3—O4—H4	103 (2)	С12—С17—Н17А	120.5
С19—О6—Н9	112 (2)	С16—С17—Н17А	120.5
С21—О9—Н8	110.3 (18)	O2—C18—O1	122.97 (17)
Н5—О13—Н6	102 (3)	O2—C18—C16	123.40 (16)
H10—O14—H11	104 (10)	O1-C18-C16	113.63 (16)
C3—N1—C1	116.98 (15)	O5—C19—O6	120.08 (19)
C3—N1—Zn1	120.43 (12)	O5—C19—C23	119.00 (18)
C1—N1—Zn1	122.58 (12)	O6—C19—C23	120.91 (17)
C8—N2—C10	119.85 (15)	O8—C20—O7	123.68 (18)
C8—N2—C12	120.28 (14)	O8—C20—C28	117.35 (16)

C10—N2—C12	119.85 (14)	O7—C20—C28	118.95 (16)
N1—C1—C2	123.42 (17)	O10-C21-O9	123.79 (17)
N1—C1—H1A	118.3	O10-C21-C25	121.67 (16)
C2—C1—H1A	118.3	O9—C21—C25	114.51 (16)
C1—C2—C5	119.20 (17)	O11—C22—O12	125.74 (16)
C1—C2—H2A	120.4	O11—C22—C26	118.48 (15)
С5—С2—Н2А	120.4	O12—C22—C26	115.63 (15)
N1—C3—C4	123.26 (17)	C24—C23—C28	118.29 (15)
N1—C3—H3A	118.4	C24—C23—C19	112.65 (15)
С4—С3—Н3А	118.4	C28—C23—C19	129.02 (16)
C3—C4—C5	119.72 (17)	C25—C24—C23	122.71 (15)
C3—C4—H4A	120.1	C25—C24—H24A	118.6
C5—C4—H4A	120.1	C23—C24—H24A	118.6
C4—C5—C2	117.37 (16)	C24—C25—C26	118.93 (15)
C4—C5—C6	120.26 (16)	C24—C25—C21	121.64 (15)
C2—C5—C6	122.36 (16)	C26—C25—C21	119.03 (15)
С7—С6—С9	117.70 (16)	C27—C26—C25	118.78 (15)
C7—C6—C5	121.10 (15)	C27—C26—C22	117.73 (15)
C9—C6—C5	121.18 (16)	C25—C26—C22	123.32 (15)
C8—C7—C6	120.62 (17)	C26—C27—C28	123.08 (15)
С8—С7—Н7А	119.7	С26—С27—Н27А	118.5
С6—С7—Н7А	119.7	С28—С27—Н27А	118.5
N2—C8—C7	120.86 (17)	C27—C28—C23	117.96 (15)
N2—C8—H8A	119.6	C27—C28—C20	113.79 (15)
С7—С8—Н8А	119.6	C23—C28—C20	128.25 (16)
С10—С9—С6	119.99 (16)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H7···O12 ⁱⁱ	0.87 (2)	1.80 (3)	2.656 (3)	164 (3)
O3—H1…O11 ⁱⁱⁱ	0.85 (2)	1.88 (3)	2.732 (2)	175 (3)
O3—H2…O11 ^{iv}	0.81 (3)	2.03 (2)	2.820 (4)	163 (2)
O4—H3…O13 ^{iv}	0.84 (2)	1.84 (3)	2.677 (6)	175 (3)
O4— $H4$ ···O12 ^v	0.90 (3)	1.79 (4)	2.694 (2)	177 (4)
О6—Н9…О7	0.87 (3)	1.56 (3)	2.418 (2)	174 (3)
O9—H8···O8 ^{iv}	0.85 (3)	1.82 (3)	2.646 (3)	163 (4)
O13—H5…O10	0.92 (4)	1.90 (2)	2.813 (3)	174 (3)
013—H6…O7 ^{iv}	0.87 (4)	1.86 (4)	2.723 (2)	169 (3)
O14—H11…O13	0.82 (2)	2.18 (2)	2.846 (2)	138 (2)
C7—H7A···O1 ^{vi}	0.93	2.30	3.155 (2)	153
C8—H8A…O12 ^{vii}	0.93	2.52	3.302 (2)	142
C9—H9A···O2 ^{viii}	0.93	2.30	3.225 (2)	172
C10—H10A····O5 ^{ix}	0.93	2.15	3.060 (3)	167

Symmetry codes: (ii) -*x*+2, *y*+1/2, -*z*+1/2; (iii) -*x*+2, *y*-1/2, -*z*+1/2; (iv) *x*, -*y*+3/2, *z*+1/2; (v) *x*-1, -*y*+3/2, *z*+1/2; (vi) -*x*+1, *y*-1/2, -*z*+1/2; (vii) *x*-1, *y*, *z*; (viii) -*x*+1, -*y*+2, -*z*+1; (ix) -*x*+1, *y*+1/2, -*z*+1/2.

Fig. 2